EoS constraints from a model-independent approach

Francesca Gulminelli, Debarati Chatterjee - LPC Caen Jerome Margueron – IPNL Adriana Raduta – IFIN

EoS and empirical constraints

- EoS can be characterized by empirical parameters $P_k = \partial^k e / \partial \rho^k$ ex:J,L,...
- DFT models corresponding to different EoS are compared to exp.data
- $P_k \pm \Delta P_k$ determined fitting the model to the data
- Correlations among P_k are typically observed

M.Fortin et al, PRC 94,035804

Problems

 Nuclei are not simply droplets of nuclear matter! Energy functionals contain many terms
 => Uncertainty in gradient couplings gets mixed up with

uncertainty in P_k

 Pheno functionals contain spurious correlations among emp.parameters
 => results are model dependent

Problems

 Pheno functionals contain spurious correlations among emp.parameters
 ⇒ results are model dependent

C.Ducoin et al PRC 2011

A model independent approach

 Nuclei are not simply droplets of nuclear matter! Energy functionals contain many terms => Uncertainty in gradient

couplings gets mixed up with uncertainty in P_k

 Pheno functionals contain spurious correlations among emp.parameters
 results are model dependent A single effective isoscalar gradient term to be fitted on nuclear masses $e(n, \delta) = e_{NM} + C(\nabla n)^2$

$$\begin{cases} n = n_p + n_n \\ \delta = (n_p - n_n)/n \end{cases}$$

Taylor expansion around
$$n_0$$

 $e_{NM}(n,\delta) = \sum_k \frac{1}{k!} \left(c_k^{IS} + c_k^{IV} \delta^2 \right) \left(\frac{n - n_0}{3n_0} \right)^k$

Steiner, Lattimer, Brown ApJ722(2010)33

Symmetry energy

Present uncertainty on P_k: prior distribution

				Esat	Esym	nsat	L _{sym}	Ksat	K _{sym}	Qsat	Qsym	Zsat	Zsym	m_{sat}^*/m	$\Delta m_{sat}^*/m$	
	Model (N_{α})		der. order	MeV 0	MeV 0	fm ⁻³ 1	MeV 1	MeV 2	MeV 2	MeV 3	MeV 3	MeV 4	MeV	-	-	
													4			
		Phenomenological approaches														
	Skyrme		Average	-15.88	30.25	0.1595	47.8	234	-130	-357	378	1500	-2219	0.73	0.08	
	(16) Skyrme (35) RMF (11) RHF (4)		σ Average	0.15 -15.87	1.70 30.82 1.54 35.11 2.63 33.97	0.0011 0.1596 0.0039 0.1494 0.0025 0.1540	16.8 49.6 21.6 90.2 29.6 90.0	10 237 27 268 34 248	66 -132 89 -5 88 128	22 -349 89 -2 393 389	110 370 188 271 357 523	169 1448 510 5058 2294 5269	617 -2175 1069 -3672 1582 -9956	0.10 0.77 0.14 0.67 0.02 0.74	0.24	
															0.127	
			σ	0.18											0.310	
			Average	-16.24 0.06											-0.09 0.03	
			σ													
			Average	-15.97											-0.03	
			σ	0.08	1.37	0.0035	5 11.1	12	51	350	237	838	4156	0.03	0.01	
	Ab-initio approaches															
		APR	Average	-16.0	33.12	0.16	50.0	270	-199	-665	923	337	-2053	1.0	0.0	
		(1)		_†	0.30	_†	1.3	2	13	30	67	94	125	_†	_†	
	λ	ζ-EFT	Average	-15.16	32.01	0.171	48.1	214	-172	-139	-164	1306	-2317	-	-	
	Drischler 2016 (7)		σ_{tot}	1.24	2.09	0.016	3.6	22	40	104	234	214	379	-	-	
			Min	-16.92	28.53	0.140	43.9	182	-224	-310	-640	901	-2961	-	-	
			Max	-13.23	34.57	0.190	53.5	242	-108	24	96	1537	-1750	-	-	
_																
χ	E_{sat}	E_{sym}	n _{sat}	L _{sym}	K_s	sat	K _{sym}	Q_{sat}	Q	sym	Z_{sat}		Z_{sym}	m_{sat}^*/m	Δm_{sat}^*	
	MeV	MeV	fm^{-3}	MeV	Me	eV	MeV	MeV	Ν	leV	MeV	1	MeV			
$\langle \rangle$	-15.8 32		0.155	60	23	30	-100	0		0	-100	0	-1000	0.75	0.1	
~	± 0.3 ± 2		± 0.005	± 15	±2	20	± 100	± 400	±	400	± 100	0	± 1000	± 0.1	± 0	

HNM: Constraints from neutron star physics

- Causality: $0 < v_s < c$
- NS stability: $\nabla p > 0$ for $n > n_0$ in β -equilibrium
- $E_{sym} > 0$
- M_{max}>2M_o
- Limit on DURCA:
 - No DURCA up to 2M_o DURCA0
 - o DURCA only for $M>1.8M_{o}$ DURCA1
 - o DURCA only for $M>1.6M_{o} DURCA2$

Z _{sym}	0.0	0.1	-0.4	-0.0	-0.1	-0.2	PRE	1.0		
Q _{sym}	-0.0	-0.2	0.1	-0.0	-0.1	-0.2	1.0	IM		
K _{sym}	0.0	-0.0	0.1	-0.0	-0.1	1.0	-0.2	-0.2	42	
L _{sym}	0.0	0.0	0.0	-0.0	1.0	-0.1	-0.1	-0.1		
E _{sym}	-0.0	-0.0	0.0	1.0	-0.0	-0.0	-0.0	-0.0		
Z _{sat}	0.0	-0.1	1.0	0.0	0.0	0.1	0.1	-0.4		
Q _{sat}	-0.0	1.0	-0.1	-0.0	0.0	-0.0	-0.2	0.1		
K _{sat}	1.0	-0.0	0.0	-0.0	0.0	0.0	-0.0	0.0		
	K _{sat}	Q _{sat}	Z _{sat}	E _{sym}	L _{sym}	K _{sym}	Q _{sym}	Z _{sym}		

Finite nuclei

 Nuclei are not simply droplets of nuclear matter! Energy functionals contain many terms

> => Uncertainty in gradient couplings gets mixed up with uncertainty in P_k

A single effective isoscalar gradient term to be fitted on nuclear masses $e(n, \delta) = e_{NM} + C(\nabla n)^2$

Observables from \hbar^2 -ETF with parametrized density profiles $n_q(r) = \frac{n_{0q}}{\frac{r-R_q}{1+e^{\frac{r-R_q}{a_q}}}}$

Analytical integration of the Fermi integrals

F.Aymard et al., J.Phys.G43,045105(2016)

Calibrating the gradient term

Results: radii

• After filter; $\chi_{cutoff}=0.2 \text{ MeV}$

Results: correlations

Conclusions

- Constraints on EoS empirical parameters need both NS
 physics and laboratory experiments
- We propose an empirical EoS avoiding spurious constraints from the energy density functional form
- Finite nuclei observables from ETF with a single gradient term fixed from nuclear mass
- Bayesian determination of parameters with flat or gaussian prior
- Third order derivatives still largely unconstrained
- SKIN CORRELATED TO L
- ALMOST NO CORRELATION AMONG EMP.PARAMETERS

